
Mini-Sumo Robot
J. Chang, E. Li, L. Ma, J. Sparrow, L. Richard

 Abstract – This report outlines the design of an autonomous
mini-sumo robot. The robot relies solely on infrared, ultrasonic,
encoder and line detector sensors to operate autonomously
within a 77cm diameter ring. The robot weights under 500g and
has a 10x10cm base. The mini-sumo robot successfully executes
offensive and defensive tactics on an opponent.

I. INTRODUCTION

The purpose of this project is to construct and program an
autonomous mini-sumo robot for Eleven Engineering. The
goal of the robot is to push its’ opponent out of the ring, just
like in a real sumo wrestling match. The robot must be able to
compete with other mini-sumo robots within a ring where the
objective is to push the opponent out of the ring. The robot
must comply with the rules and regulations outlined by the
Western Canadian Robot Games (WCRG). These rules state
that the robot must weight less than 500 grams and have base
dimensions within 10 x 10 cm; no restrictions exist for the
height of the robot. The match takes place inside a circular
ring; the competing area is black and is delimited by a white
ring. Various sensors on he robot are used to keep it within
the bounds of the ring, to detect opponents and to trigger
appropriate actions to push the opponent out of the ring.

II. DESIGN IMPLEMENTATION

 In order to implement our design, four subsystems were
chosen: power subsystem, sensors subsystem, motor
subsystem and the microcontroller subsystem. The mini-sumo
robot block diagram is shown in Fig. 1. The power subsystem
will provide power to our Microcontroller and all the sensors
used by our robot. The sensors will gather data both as analog
and digital signals and transmit it to the microcontroller. The

microcontroller will use the data to trigger pre-set
manoeuvres in the motors.

A. XInC2 Microcontroller
 The XInC2 Microcontroller is developed by Eleven
Engineering. The Mini-Development XInC2 board used in
this project is a derivative of their regular board. This board is
ideal for our project because of its size, the 2.8 x 6 cm board
fits nicely within our 10 x 10 cm frame. Another important
attribute of the XInC2 board is its multi-threaded architecture.
The controller has eight threads which run simultaneously
which will allow us to assign separate threads to separate
subsystems.

 The XinC2 Mini-DevBoard houses the XInC2
microcontroller which will be used to control the robot. This
board has three sets of headers to interface with the other two
PCB boards. The Mini-DevBoard allows interfacing with 41
general purpose input/output pins on seven different ports of
the XInC2 microcontroller. An onboard boost converter
supplies the voltage required to run the XInC2 as well as a
regulated voltage for external circuitry.

 Each of the eight threads behave as individual processors
and have access to the main memory and the peripheral bus.
With XInC2, the disadvantages of serial interrupt-based
processors such as context swapping, task scheduling,
unpredictable execution times, and real time operating system
(RTOS) overheads are avoided. The eight processors share
hardware resources with the exception of each thread’s
dedicated register set. Thus for the hardware cost of one
processor XInC2 provides eight.

Fig. 1. Mini-Sumo Robot Block Diagram

Fig. 2. XinC2 Mini-DevBoard Layout

TABLE I

XINC2 PIN SUMMARY
Pin/PCB Label Pin Type Description
AN0, AN1 Analog IR sensors
AN2, AN3 Analog Current Sensing
PA0, PA1, PA2, PA3 Digital Bumper Switches
PA4, PA5, PA6, PA7 Digital Line Detector sensors
PC4, PC5 Digital Ultrasonic sensors
PD4, PD5 Digital Motor Pulse Width Modulation
PE0, PE1, PE2, PE3 Digital Motor Direction
PH1, PH2 Digital Tire Encoders

 Each hardware thread is scheduled to execute at 1/8 of the
system clock, thus removing the overhead of an RTOS.
Firmware can be written as eight independent programs, with
each program running on its own thread processor [1]. We
can take advantage of this architecture by assigning one
thread processor to control a specific subsystem.

B. Line Detectors
 The line detectors are the most important defensive sensor
on the robot because these sensors will provide the robot with
a sense of direction. If the line detectors are over a black
surface, a logic 0 is sent and the robot will seek out the
opponent. When a white surface is detected the robot is near
the edge of the ring, a logic 1 is sent and the robot will switch
into defensive mode to get away from the edge. The line
detectors were placed at the four corners of the robot to
ensure the fastest response time. States were chosen to detect
a change in the state of one or two line detectors. Three line
detectors were left out because three line detectors will not go
off simultaneously. The line detector sensors are powered by
a 5V DC signal. The output signals from the line detectors are
sent to the XInC2; a black surface is a logic 0 and a white
surface is a logic 1. The signal is sent to the XInC2 General
Purpose Input Output (GPIO) Port A. The maximum
threshold that the GPIO’s can handle is 3.3 V. The signal
coming out of the line detector is sent to a voltage divider and
then signal from the midpoint of the voltage divider is then
sent to the XInC2 port. This effectively divides the signal in
half, thus allowing it to be under 3.3V. The voltage divider
we chose is a 50/50 divider. Two resistors of 270kΩ were

chosen in order to neglect the internal resistance of the line
detector.

Fig. 3. Line Detector Schematic

C. Tire Encoders
 The mini-sumo robot uses QTR-1A encoders in order to
keep track of the distance travelled by the wheels of the robot.
An encoder for each wheel is inserted into the tire. The
encoders operate by reading the teeth on the inside of the tire.
By tracking the voltages transitions/changes of the encoder as
the teeth of the inner tire are read, the distance that each
wheels travels can be determined.

 As the sensors come across a strong reflective surface such
as a white surface, the output tends towards 0V. As the
sensors come across a weak reflective surface such as a black
surface, the output voltage tends to towards the supply
voltage. The voltage supplied to the encoders is 5V from the
regulator. As the encoders read the teeth of the tire, the low
voltage range varies from 0.246 -1.06V and the high voltage
range varies from 2.08- 2.89V. The ranges of these voltages
depend on how deep the encoders are embedded in the tire.
Since these ‘raw’ voltages are adequate voltages for the
digital I/O pins of the microcontroller, a voltage divider are
not needed to reduce the output signal voltages of the
encoders.

Fig. 4. Tire Encoders Schematic

D. Bumper Switches
 The bumper switches are used to establish if contact has
been made with the opponent. There is a bumper switch for
each side of the robot for a total of four bumper switches.
Each bumper switch is tied to the 3.3V rail and a 1kΩ
resistor. The signal from the bumper switch is then sent to the

GPIO ports (PA3-PA0). The bumper switch is tied to 3.3V
until contact is made which connects the bumper switch to
ground. XInC2 interprets these signals as a logic 0 or 1.

Fig. 5. Bumper Switches Schematic

E. Ultrasonic Sensor
 The Ultrasonic sensor used in this project is the PING
parallax sonar sensor. The schematic of the sonar is shown in
Fig.6. The sonar requires two pins on the Mini-Dev board,
one pin to send a pulse (PC4) and the other pin to receive
(PC5) the echo pulse. The XInC2 will send a logic 0 to the
2N4401 NPN BJT base junction which will turn it off. This
allows the 5V tied to the collector junction to send a trigger
pulse to the sonar. In order to receive a signal, a 1 is sent,
turning on the BJT. Now the anode of the diode is at a lower
potential than on the cathode side, so the sonar will return the
signal through the voltage divider and back into pin PC4. In
order to send and receive the sonar signal on the same pin
without being harmful to the GPIO ports, a BJT is used as
shown on Fig.6. The voltage divider is a 50/50 divider that
uses two (2) 1.5 MΩ resistors. A 4.3 kΩ resistor is used on
collector junction of the BJT while a 15 kΩ is used on the
signal path.

Fig. 6. Ultrasonic Sensor Schematic

F. Power Supply
 The XInC2 microcontroller, sensors and motors will be
powered by two 9V batteries. Two batteries are required to
ensure that the subsystems can draw enough current. Having
one battery dedicated to the motor systems and the other
battery for the rest of the electronics also reduces noise in the
system.

 Regulators are used to drop the supply voltage from 9V to
5V and 3.3V. The 5V rail will power the infrared, ultrasonic,
encoder and line detector sensors while the 3.3V rail will
power the XinC2 microcontroller and the bumper switches.

Fig. 7. Voltage Regulator Schematic

Fig. 8. Power Supply Switches Schematic

G. Infrared Sensors
 The Sharp (GP2D120) IR sensors play an important part in
the offensive strategy of the Mini-Sumo Robot. There are 2
IR sensors mounted on the front of the sumo robot 3 cm
behind the front panel to avoid the “blind spot” limitation of
the sensor. The Sharp sensor came with a datasheet that
shows the relationship between voltage and distance, which
was verified during component testing. The sensors operate
at an input voltage of 5V and output voltages up to 3.2V,
depending on the distance of the target object from the sensor.
The XinC2 Microcontroller analog ports (AN0, AN1) can
handle a maximum of 1.8V, so a voltage divider, consisting
of a 1.5K and a 2.2K resistor as shown in Fig.9, is used to
drop 3.2V to below 1.8V.

H. Motors
 The motors subsystem consists of a L298 dual full-bridge
driver, two 100:1 micro HP gear-motors manufactured by
Pololu, and current sensing feedback for each motor. The
driver allows for bi-directional operation of 2 separate motors
which is necessary for our application. In order to protect the
driver from destructive back current from the motors,
freewheeling diodes were used to allow a safe path for the

Fig. 9. Infrared Sensors Schematic

current to flow. The gear-motors have a free-run speed of
315rpm, and draws as little as 80mA when operated at a rated
voltage of 6V. When the motors are stalled, each one draws a
current of 1.6A which is below the driver’s maximum output
current of 2A. This allows the motors to achieve a lot of
torque which is required to push an opponent out of the ring.

 Current sensing feedback is achieved by inserting a 0.2Ω
resistance, achieved by 5 1Ω resistors in parallel, between the
SEN pins of the driver and ground (as shown in Fig. 11) and
sensing the voltage across the resistance using one of the
XInC2 ADC pins. This voltage is proportional to the current
flowing through the motors and provides information on the
torque of the motors. The speed of the motors can be
determined using the tire encoder feedback. Together, this
information allows for accurate representation of the state of
the motors, such as whether they are spinning out or if
traction is achieved.

Fig. 10. L298 H-Bridge Schematic

Fig. 11. L298 Current Sensing Schematic

Fig. 12. Motor Freewheel Diodes Schematic

III. SOFTWARE DESIGN

 The mini-sumo robot has to be completely autonomous,
meaning it will have to navigate through the ring and find the
opponent completely on its own. To perform these tasks
reliably and efficiently, the robot must depend heavily on the
sensors and firmware developed for these sensors.

A. Line Detector Software
 As stated above in the hardware design section, each line
detector sends a 0 V signal to the XInC2 when over a black
surface and a 2.5V signal to the XInC2 when over a white
surface. A 0V signal is interpreted as a logic 0, while the 2.5V
signal is interpreted as a logic 1. All the information from the
sensors is stored on one thread as a gatekeeper function.
Made a subroutine. We have decided that there are eight
combinations that need to be monitored: front left corner,
front right corner, back left corner, back right corner, front
side, back side, left side, and right side. Each line detector
represents 1 bit in an 8-bit word. When the program detects
one of the aforementioned states, the defensive mode is
activated and the robot will manoeuvre towards the center of
the ring. If all states are cleared, the robot will enter Hunt
mode. The figure shown below illustrates the high-level
programming.

B. Tire Encoder Software
 The tire encoders read the transition between the tire, a
black surface, and the teeth of the wheel hub, a white surface,
to determine the distance travelled by the wheels. This
information is used in conjunction with the current sensing to
provide feedback to the microcontroller and determine if the
robot is stalling or slipping. The feedback from the encoders
provides the XinC2 with the ability to control the distance
each wheel of the robot travels in order to perform various
manoeuvres, such as 90 degree turn, wide turns or stationary
spins.

 The inner wheel hub consists of 12 teeth which correspond
to 24 voltage transitions per rotation. With each tire having a

diameter of 4.2cm, it was calculated that a full rotation of the
wheel will travel 13.195cm and that each transition
corresponds to approximately 0.55cm travelled.

Fig. 13. Line Detector Flowchart

 A subroutine program for the encoders reads the inputs
from digital I/O pins, H1 and H2. The program then branches
into one of four different state loops depending on the initial
encoder input reading. The different states are: both encoder
inputs are low, both encoder inputs are high, encoder 1 is low
while encoder 2 is high, and encoder 1 is high while encoder
2 is low. The state loops continuously read the input and
remain in the loop until a change in state is detected, then the
code branches to one of the three counters. One counter
branch increments the counter for encoder 1, another counter
branch increments the counter for encoder 2, and the last
counter branch increments both counters if a change in state
of both pins is detected. The counters for each encoder are
stored in RAM right after the counter increments.

 As mentioned earlier, the encoders count the number of
transitions from low to high or high to low voltages. Each
transition is approximately 0.55cm travelled by the wheel.
Another subroutine is made to convert the encoder counter to
distances travelled. Since the XinC2 cannot multiply register
values or RAM variables, a loop is needed to continuously
add the counter to itself until the multiplication is complete.
It should also be noted that the microcontroller cannot accept
the direct multiplication of a decimal constant and will round
results to the nearest whole number when using the unsigned
divide subroutine. The conversion subroutine takes the
encoder counter and multiplies it by 10 and then divides the
result by 18 to give an approximate multiplication of 0.55.
This operation is performed by adding the counter to itself 10

times, then dividing the result by 18 using the unsigned divide
subroutine. The reason for multiplying by 10 and dividing by
18 rather than multiplying by 55 and dividing by a 100 is just
to provide a ‘safer’ conversion process. This method is
‘safer’ because the maximum value that can be stored in a
register is 216 (=65,536). If the multiplication results in a
value higher than this, errors in calculation will occur.
Multiplication by a smaller number (10 rather than 55 in this
case) will be less likely to ever reach this maximum value and
cause errors. This conversion routine is utilized for both
encoders and resulting distance in centimetres is stored into
RAM.

Fig. 14. Tire Encoder Flowchart

 The encoder conversion subroutine is used in the counter
branches of the encoder counter subroutine so that the values
of distance travelled by the wheel will be updated
immediately after an increment in the encoder counter. The
subroutine will be run by one thread, continuously updating
and storing results in RAM for access by the main program.

C. Infrared Sensor Software
 The IR subsystem software begins with the initialization of
the hardware by clearing all registers, stacking previous
variables, and configuring the XInC2 analog-to-digital
converter. Once the initializations are complete, the ADCdata
is checked to determine if the information is from the proper
channel. If so, then this information is stored for further
processing, whereas if the information is from the wrong
channel, it is disregarded. This is required to receive the
appropriate information which represents the distance of the
opponent. The ADCdata register is a 10bit register, so XinC2
will read out the distance as a range in hex, 0x0000 to
0x03FF. The data is then converted to a distance in
centimetres. The robots reaction will depend on how close the
opponent is to the Mini-Sumo Robot. One problem that was
encountered was that the acquired data was unstable, typically
varying by one byte value. In order to solve this problem, an
average of five reading was taken before storing into RAM.

The XinC2 capabilities allow for the IR sensors to be
continuously read in and the RAM registers to be updated
without any major delays.

Fig. 15. Infrared Sensor Flowchart

D. Sonar Software
 The sonar software triggers the sonar, and then waits for a
response. This subroutine will send a 5µs trigger pulse to the
sonar and then wait for 690µs before repeatedly checking for
the signal line to go high. After which, the program will
initialize a counter and wait for the signal to return to 0. If no
signal is received, then the counter will time out after 21ms.
The resulting count is multiplied by 1.2 to obtain a reading in
millimetres. This data is then stored in a RAM register for use
by the main program. Each increment in the counter results in
one reading and the entire routine takes about 21ms to
execute.

Fig. 16. Ultrasonic Sensor Flowchart

E. Motor Software
 The motors are operated using a PWM signals with varying
duty cycles. These signals are generated using the XInC2’s
timer facility which is configured with the time length of one
cycle as well as the time after the start of a cycle that the
signal should go low. This signal is applied to the driver on
the enable pins. The average voltage sent to the motors can be
controlled by changing the duty cycle of these signals. The
driver has two inputs, one for each motor, to control direction.
These inputs should always be opposite of each other or both
off, otherwise a short is created.

F. Complete System Programming
 The firmware for the entire robot takes full advantage of
the eight threads of the XinC2. Threads 0, 1, and 2 are for
main strategy programming. Thread 3 continuously loops the
encoder subroutine, while Thread 4 continuously loops the
subroutines of the bumper switches, line detectors, and
encoder/infrared conversion to centimetres. Thread 5
continuously loops the subroutine for analog sensors, whereas
Thread 6 continuously loops the ultrasonic sensor subroutine
and ultrasonic conversion to centimetres subroutine. Thread
7 configures the ports and other resources of the XinC2, then
continuously loops the subroutine controlling the motors.

TABLE X
THREAD USAGE SUMMARY

Thread # Purpose
0 Strategy programming.
1 Strategy programming.
2 Strategy programming.
3 Updates tire encoder data.
4 Updates bumper switch, line detector, and LED data.

Also converts data from encoders and IR sensors to cm.
5 Updates current sensing and IR sensing data.
6 Updates ultrasonic sensor data.
7 Configures ports on XinC2 and controls/updates

motors.

Fig. 17. Main Program Flowchart

IV. TESTING
A. Breadboarding
 Initially, each subsystem was tested by constructing the
circuit on a breadboard according to the schematics. This was
an easy way to layout the circuit in order to test if each
component was working properly, as well as the general
circuitry. Components were interchanged easily if the
subsystem was not performing adequately. Critical
measurements and observations were taken using an
oscilloscope to ensure the circuit was operating properly and
power consumption was acceptable.

 The breadboarding stage of testing was fairly trivial in this
case because the subsystem circuitry is basic in nature and all
circuits worked as expected, except the ultrasonic subsystem.
It was discovered that one pin on the sonar was used to send
and receive the signal, which required extra circuitry in order
to separate the signal. Breadboarding of this circuit was
important to obtain the lowest possible power consumption
while still successfully operating the sonar. Motor testing
was also performed at this stage by mounting the H-bridge
and supporting circuitry on a breadboard, then operating the
motors in both directions.

B. Printed Circuit Board (PCB)
 The PCB’s needed to be inspected after they were
manufactured to ensure that each trace was where it should be

and that the traces did not accidently short circuit. Some
traces were connected at places where they should not have
been, so they were carefully cut out. After soldering
components onto the PCB, each PCB was tested individually
in order to make sure that it performed identically to when it
was tested on the breadboard.

 The main problems encountered at this stage of testing
were connected traces at places they shouldn’t be and
excessive solder which created short circuits between
adjacent traces. The errors in traces were resolved through
careful inspection of the boards and thorough comparison
with the schematics. Soldering issues were dealt with by
using de-soldering strips to remove excess solder. Some
components were re-soldered in order to obtain good
connections without unwanted short circuits. Great care was
taken when soldering close connections in order to minimize
the likelihood of such cases.

C. Test Program
 Testing of the Mini-Sumo Robot was carried out using a
test program which mimics our final program. The “Test
Program” is a compilation of various test routines which can
be accessed from the main menu of Eleven Engineering’s
XDE Development Toolkit. These routines include a RAM
register dump routine, a routine that displays the status of the
sensors, and a routine called “Set Drive”. Set Drive allows the
user to input data of a specific manoeuvre and run the “Drive”
subroutine. The dump routine allows the user to get an instant
update of any register defined in the “Long Data.asm” file.
The sensors routine displays the data in all the RAM registers.

 Besides allowing effective testing of the robot
functionality, the test program is beneficial because we can
simulate different situations by manually setting the sensors
during an action. This is helpful because different
manoeuvres and scenarios can be simulated quickly, thus
showing which strategies are most beneficial for the whole
system.

V. CONCLUSION
 The mini-sumo robot was designed and implemented
successfully according to the specifications required by the
client. It met the 500g weight restriction, the 10x10cm base
size restriction, and is able to manoeuvre around the ring and
locate the opponent, while carrying out both defensive and
offensive strategies. A diverse array of sensors is used to
provide the microcontroller with as much information as
possible. This information is then interpreted by various
subroutines and appropriate actions are implemented.
Possible improvements that could be made to the mini-sumo
robot are using cheaper encoder than the Lynxmotion line
detector to save on costs and using different positioning of the
tire encoders to reduce fluctuations in low and high voltages.

ACKNOWLEDGMENT
 A special thanks to our client, Cory Duce, of Eleven
Engineering, as well as Loren Wyard-Scott and Edward
Tiong.

REFERENCES
[1] P. Jacobsen, XinC2 Users Guide Version 1.1, published by Eleven

Engineering Incorporated, 2006.
[2] D. Beutel, XinC2 Assembler Guide v1.1, published by Eleven

Engineering Incorporated, 2007.
[3] D. Beutel, XinC2 Development Tools v1.1, published by Eleven

Engineering Incorporated, 2007.
[4] D. Beutel, XinC2 Libraries v1.1, published by Eleven Engineering

Incorporated, 2007.
[5] C. Duce, XinC2 miniDev Development Board User Guide Version 1.0,

published by Eleven Engineering Incorporated, 2008.
[6] XinC2 Programmers’ Card Instruction Set Summary, published by

Eleven Engineering Incorporated, 2002.
[7] D. Beutel, XinC2 Quickstart Project Overview, published by Eleven

Engineering Incorporated, 2007.
[8] XPD Download Instructions v1.0, published by Eleven Engineering

Incorporated, 2007.
[9] Lynxmotion Inc, “Single Line Detector, Reflective IR Sensor,”

published by Lynxmotion Inc, 2006. http://www.lynxmotion.com.
[10] Polplu, “QTR-1A Reflectance Sensor,”

http://www.pololu.com/catalog/product/958
[11] Sharp Corporation, “Analog Output Type Distance Measuring Sensor,

GP2D120XJ00F,” 2005,
[12] ST Microelectronics, “Dual Full-Bridge Driver,” 2000,

http://www.st.com
[13] Parallax Inc, “PING))) Ultrasonic Distance Sensor (#28015),” 2008,

http://www.parallax.com
[14] ST Microelectronics, “Postive Voltage Regulators,” 2008,

