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 Abstract – This report outlines the design of an autonomous 
mini-sumo robot.  The robot relies solely on infrared, ultrasonic, 
encoder and line detector sensors to operate autonomously 
within a 77cm diameter ring.  The robot weights under 500g and 
has a 10x10cm base.  The mini-sumo robot successfully executes 
offensive and defensive tactics on an opponent. 
 
I. INTRODUCTION 
 

The purpose of this project is to construct and program an 
autonomous mini-sumo robot for Eleven Engineering. The 
goal of the robot is to push its’ opponent out of the ring, just 
like in a real sumo wrestling match. The robot must be able to 
compete with other mini-sumo robots within a ring where the 
objective is to push the opponent out of the ring. The robot 
must comply with the rules and regulations outlined by the 
Western Canadian Robot Games (WCRG). These rules state 
that the robot must weight less than 500 grams and have base 
dimensions within 10 x 10 cm; no restrictions exist for the 
height of the robot. The match takes place inside a circular 
ring; the competing area is black and is delimited by a white 
ring. Various sensors on he robot are used to keep it within 
the bounds of the ring, to detect opponents and to trigger 
appropriate actions to push the opponent out of the ring. 
 
II. DESIGN IMPLEMENTATION 
 
 In order to implement our design, four subsystems were 
chosen: power subsystem, sensors subsystem, motor 
subsystem and the microcontroller subsystem. The mini-sumo 
robot block diagram is shown in Fig. 1. The power subsystem 
will provide power to our Microcontroller and all the sensors 
used by our robot. The sensors will gather data both as analog 
and digital signals and transmit it to the microcontroller. The 

microcontroller will use the data to trigger pre-set 
manoeuvres in the motors. 
 
A. XInC2 Microcontroller 
 The XInC2 Microcontroller is developed by Eleven 
Engineering. The Mini-Development XInC2 board used in 
this project is a derivative of their regular board. This board is 
ideal for our project because of its size, the 2.8 x 6 cm board 
fits nicely within our 10 x 10 cm frame. Another important 
attribute of the XInC2 board is its multi-threaded architecture. 
The controller has eight threads which run simultaneously 
which will allow us to assign separate threads to separate 
subsystems. 
 
 The XinC2 Mini-DevBoard houses the XInC2 
microcontroller which will be used to control the robot. This 
board has three sets of headers to interface with the other two 
PCB boards. The Mini-DevBoard allows interfacing with 41 
general purpose input/output pins on seven different ports of 
the XInC2 microcontroller. An onboard boost converter 
supplies the voltage required to run the XInC2 as well as a 
regulated voltage for external circuitry. 
 
 Each of the eight threads behave as individual processors 
and have access to the main memory and the peripheral bus.  
With XInC2, the disadvantages of serial interrupt-based 
processors such as context swapping, task scheduling, 
unpredictable execution times, and real time operating system 
(RTOS) overheads are avoided.  The eight processors share 
hardware resources with the exception of each thread’s 
dedicated register set.  Thus for the hardware cost of one 
processor XInC2 provides eight. 

 

 
Fig. 1. Mini-Sumo Robot Block Diagram 



 

 
Fig. 2. XinC2 Mini-DevBoard Layout 

 
TABLE I 

XINC2 PIN SUMMARY 
Pin/PCB Label Pin Type Description 
AN0, AN1 Analog IR sensors 
AN2, AN3 Analog Current Sensing 
PA0, PA1, PA2, PA3 Digital Bumper Switches 
PA4, PA5, PA6, PA7 Digital Line Detector sensors 
PC4, PC5 Digital Ultrasonic sensors 
PD4, PD5 Digital Motor Pulse Width Modulation 
PE0, PE1, PE2, PE3 Digital Motor Direction 
PH1, PH2 Digital Tire Encoders 
 
 Each hardware thread is scheduled to execute at 1/8 of the 
system clock, thus removing the overhead of an RTOS.  
Firmware can be written as eight independent programs, with 
each program running on its own thread processor [1]. We 
can take advantage of this architecture by assigning one 
thread processor to control a specific subsystem.  
 
B. Line Detectors 
 The line detectors are the most important defensive sensor 
on the robot because these sensors will provide the robot with 
a sense of direction. If the line detectors are over a black 
surface, a logic 0 is sent and the robot will seek out the 
opponent. When a white surface is detected the robot is near 
the edge of the ring, a logic 1 is sent and the robot will switch 
into defensive mode to get away from the edge. The line 
detectors were placed at the four corners of the robot to 
ensure the fastest response time. States were chosen to detect 
a change in the state of one or two line detectors. Three line 
detectors were left out because three line detectors will not go 
off simultaneously. The line detector sensors are powered by 
a 5V DC signal. The output signals from the line detectors are 
sent to the XInC2; a black surface is a logic 0 and a white 
surface is a logic 1. The signal is sent to the XInC2 General 
Purpose Input Output (GPIO) Port A. The maximum 
threshold that the GPIO’s can handle is 3.3 V. The signal 
coming out of the line detector is sent to a voltage divider and 
then signal from the midpoint of the voltage divider is then 
sent to the XInC2 port. This effectively divides the signal in 
half, thus allowing it to be under 3.3V. The voltage divider 
we chose is a 50/50 divider. Two resistors of 270kΩ were 

chosen in order to neglect the internal resistance of the line 
detector.  

 
 

Fig. 3. Line Detector Schematic 
 
C. Tire Encoders 
 The mini-sumo robot uses QTR-1A encoders in order to 
keep track of the distance travelled by the wheels of the robot.  
An encoder for each wheel is inserted into the tire.  The 
encoders operate by reading the teeth on the inside of the tire.  
By tracking the voltages transitions/changes of the encoder as 
the teeth of the inner tire are read, the distance that each 
wheels travels can be determined.   
   
 As the sensors come across a strong reflective surface such 
as a white surface, the output tends towards 0V.  As the 
sensors come across a weak reflective surface such as a black 
surface, the output voltage tends to towards the supply 
voltage.  The voltage supplied to the encoders is 5V from the 
regulator.  As the encoders read the teeth of the tire, the low 
voltage range varies from 0.246 -1.06V and the high voltage 
range varies from 2.08- 2.89V.  The ranges of these voltages 
depend on how deep the encoders are embedded in the tire.  
Since these ‘raw’ voltages are adequate voltages for the 
digital I/O pins of the microcontroller, a voltage divider are 
not needed to reduce the output signal voltages of the 
encoders. 

 
Fig. 4. Tire Encoders Schematic 

 
D. Bumper Switches 
 The bumper switches are used to establish if contact has 
been made with the opponent. There is a bumper switch for 
each side of the robot for a total of four bumper switches. 
Each bumper switch is tied to the 3.3V rail and a 1kΩ 
resistor. The signal from the bumper switch is then sent to the 



GPIO ports (PA3-PA0).  The bumper switch is tied to 3.3V 
until contact is made which connects the bumper switch to 
ground. XInC2 interprets these signals as a logic 0 or 1.  
 

 
Fig. 5. Bumper Switches Schematic 

 
E. Ultrasonic Sensor 
 The Ultrasonic sensor used in this project is the PING 
parallax sonar sensor. The schematic of the sonar is shown in 
Fig.6. The sonar requires two pins on the Mini-Dev board, 
one pin to send a pulse (PC4) and the other pin to receive 
(PC5) the echo pulse. The XInC2 will send a logic 0 to the 
2N4401 NPN BJT base junction which will turn it off. This 
allows the 5V tied to the collector junction to send a trigger 
pulse to the sonar. In order to receive a signal, a 1 is sent, 
turning on the BJT. Now the anode of the diode is at a lower 
potential than on the cathode side, so the sonar will return the 
signal through the voltage divider and back into pin PC4. In 
order to send and receive the sonar signal on the same pin 
without being harmful to the GPIO ports, a BJT is used as 
shown on Fig.6. The voltage divider is a 50/50 divider that 
uses two (2) 1.5 MΩ resistors. A 4.3 kΩ resistor is used on 
collector junction of the BJT while a 15 kΩ is used on the 
signal path.  
 

 
Fig. 6. Ultrasonic Sensor Schematic 

 
F. Power Supply 
 The XInC2 microcontroller, sensors and motors will be 
powered by two 9V batteries.  Two batteries are required to 
ensure that the subsystems can draw enough current.  Having 
one battery dedicated to the motor systems and the other 
battery for the rest of the electronics also reduces noise in the 
system.   

 
 Regulators are used to drop the supply voltage from 9V to 
5V and 3.3V.  The 5V rail will power the infrared, ultrasonic, 
encoder and line detector sensors while the 3.3V rail will 
power the XinC2 microcontroller and the bumper switches. 
 

 
Fig. 7. Voltage Regulator Schematic 

 
 

 
Fig. 8. Power Supply Switches Schematic 

 
G. Infrared Sensors 
 The Sharp (GP2D120) IR sensors play an important part in 
the offensive strategy of the Mini-Sumo Robot.  There are 2 
IR sensors mounted on the front of the sumo robot 3 cm 
behind the front panel to avoid the “blind spot” limitation of 
the sensor.  The Sharp sensor came with a datasheet that 
shows the relationship between voltage and distance, which 
was verified during component testing.  The sensors operate 
at an input voltage of 5V and output voltages up to 3.2V, 
depending on the distance of the target object from the sensor. 
The XinC2 Microcontroller analog ports (AN0, AN1) can 
handle a maximum of 1.8V, so a voltage divider, consisting 
of a 1.5K and a 2.2K resistor as shown in Fig.9, is used to 
drop 3.2V to below 1.8V. 
 
H. Motors 
 The motors subsystem consists of a L298 dual full-bridge 
driver, two 100:1 micro HP gear-motors manufactured by 
Pololu, and current sensing feedback for each motor. The 
driver allows for bi-directional operation of 2 separate motors 
which is necessary for our application. In order to protect the 
driver from destructive back current from the motors, 
freewheeling diodes were used to allow a safe path for the  



 
Fig. 9. Infrared Sensors Schematic 

 
current to flow. The gear-motors have a free-run speed of 
315rpm, and draws as little as 80mA when operated at a rated 
voltage of 6V. When the motors are stalled, each one draws a 
current of 1.6A which is below the driver’s maximum output 
current of 2A. This allows the motors to achieve a lot of 
torque which is required to push an opponent out of the ring. 
 
 Current sensing feedback is achieved by inserting a 0.2Ω 
resistance, achieved by 5 1Ω resistors in parallel, between the 
SEN pins of the driver and ground (as shown in Fig. 11) and 
sensing the voltage across the resistance using one of the 
XInC2 ADC pins. This voltage is proportional to the current 
flowing through the motors and provides information on the 
torque of the motors. The speed of the motors can be 
determined using the tire encoder feedback. Together, this 
information allows for accurate representation of the state of 
the motors, such as whether they are spinning out or if 
traction is achieved. 
 

 
Fig. 10. L298 H-Bridge Schematic 

 
Fig. 11. L298 Current Sensing Schematic 

 

 
Fig. 12. Motor Freewheel Diodes Schematic 

 
III. SOFTWARE DESIGN 
 
 The mini-sumo robot has to be completely autonomous, 
meaning it will have to navigate through the ring and find the 
opponent completely on its own.  To perform these tasks 
reliably and efficiently, the robot must depend heavily on the 
sensors and firmware developed for these sensors.   
 
A. Line Detector Software 
 As stated above in the hardware design section, each line 
detector sends a 0 V signal to the XInC2 when over a black 
surface and a 2.5V signal to the XInC2 when over a white 
surface. A 0V signal is interpreted as a logic 0, while the 2.5V 
signal is interpreted as a logic 1. All the information from the 
sensors is stored on one thread as a gatekeeper function. 
Made a subroutine. We have decided that there are eight 
combinations that need to be monitored: front left corner, 
front right corner, back left corner, back right corner, front 
side, back side, left side, and right side. Each line detector 
represents 1 bit in an 8-bit word. When the program detects 
one of the aforementioned states, the defensive mode is 
activated and the robot will manoeuvre towards the center of 
the ring. If all states are cleared, the robot will enter Hunt 
mode. The figure shown below illustrates the high-level 
programming. 

 
B. Tire Encoder Software 
 The tire encoders read the transition between the tire, a 
black surface, and the teeth of the wheel hub, a white surface, 
to determine the distance travelled by the wheels. This 
information is used in conjunction with the current sensing to 
provide feedback to the microcontroller and determine if the 
robot is stalling or slipping.  The feedback from the encoders 
provides the XinC2 with the ability to control the distance 
each wheel of the robot travels in order to perform various 
manoeuvres, such as 90 degree turn, wide turns or stationary 
spins. 
  
 The inner wheel hub consists of 12 teeth which correspond 
to 24 voltage transitions per rotation.  With each tire having a 



diameter of 4.2cm, it was calculated that a full rotation of the 
wheel will travel 13.195cm and that each transition 
corresponds to approximately 0.55cm travelled. 

 
Fig. 13. Line Detector Flowchart 

 A subroutine program for the encoders reads the inputs 
from digital I/O pins, H1 and H2.  The program then branches 
into one of four different state loops depending on the initial 
encoder input reading.  The different states are: both encoder 
inputs are low, both encoder inputs are high, encoder 1 is low 
while encoder 2 is high, and encoder 1 is high while encoder 
2 is low.  The state loops continuously read the input and 
remain in the loop until a change in state is detected, then the 
code branches to one of the three counters.  One counter 
branch increments the counter for encoder 1, another counter 
branch increments the counter for encoder 2, and the last 
counter branch increments both counters if a change in state 
of both pins is detected.  The counters for each encoder are 
stored in RAM right after the counter increments.   
 
 As mentioned earlier, the encoders count the number of 
transitions from low to high or high to low voltages.  Each 
transition is approximately 0.55cm travelled by the wheel.  
Another subroutine is made to convert the encoder counter to 
distances travelled.  Since the XinC2 cannot multiply register 
values or RAM variables, a loop is needed to continuously 
add the counter to itself until the multiplication is complete.  
It should also be noted that the microcontroller cannot accept 
the direct multiplication of a decimal constant and will round 
results to the nearest whole number when using the unsigned 
divide subroutine.  The conversion subroutine takes the 
encoder counter and multiplies it by 10 and then divides the 
result by 18 to give an approximate multiplication of 0.55.  
This operation is performed by adding the counter to itself 10 

times, then dividing the result by 18 using the unsigned divide 
subroutine.  The reason for multiplying by 10 and dividing by 
18 rather than multiplying by 55 and dividing by a 100 is just 
to provide a ‘safer’ conversion process.  This method is 
‘safer’ because the maximum value that can be stored in a 
register is 216 (=65,536). If the multiplication results in a 
value higher than this, errors in calculation will occur.  
Multiplication by a smaller number (10 rather than 55 in this 
case) will be less likely to ever reach this maximum value and 
cause errors.  This conversion routine is utilized for both 
encoders and resulting distance in centimetres is stored into 
RAM. 

 
Fig. 14. Tire Encoder Flowchart 

 
 The encoder conversion subroutine is used in the counter 
branches of the encoder counter subroutine so that the values 
of distance travelled by the wheel will be updated 
immediately after an increment in the encoder counter.  The 
subroutine will be run by one thread, continuously updating 
and storing results in RAM for access by the main program. 
 
C. Infrared Sensor Software 
 The IR subsystem software begins with the initialization of 
the hardware by clearing all registers, stacking previous 
variables, and configuring the XInC2 analog-to-digital 
converter. Once the initializations are complete, the ADCdata 
is checked to determine if the information is from the proper 
channel. If so, then this information is stored for further 
processing, whereas if the information is from the wrong 
channel, it is disregarded.  This is required to receive the 
appropriate information which represents the distance of the 
opponent. The ADCdata register is a 10bit register, so XinC2 
will read out the distance as a range in hex, 0x0000 to 
0x03FF. The data is then converted to a distance in 
centimetres. The robots reaction will depend on how close the 
opponent is to the Mini-Sumo Robot. One problem that was 
encountered was that the acquired data was unstable, typically 
varying by one byte value. In order to solve this problem, an 
average of five reading was taken before storing into RAM. 



The XinC2 capabilities allow for the IR sensors to be 
continuously read in and the RAM registers to be updated 
without any major delays. 

 
Fig. 15. Infrared Sensor Flowchart 

 
D. Sonar Software 
 The sonar software triggers the sonar, and then waits for a 
response. This subroutine will send a 5µs trigger pulse to the 
sonar and then wait for 690µs before repeatedly checking for 
the signal line to go high. After which, the program will 
initialize a counter and wait for the signal to return to 0. If no 
signal is received, then the counter will time out after 21ms. 
The resulting count is multiplied by 1.2 to obtain a reading in 
millimetres. This data is then stored in a RAM register for use 
by the main program. Each increment in the counter results in 
one reading and the entire routine takes about 21ms to 
execute. 

 
Fig. 16. Ultrasonic Sensor Flowchart 

E. Motor Software 
 The motors are operated using a PWM signals with varying 
duty cycles. These signals are generated using the XInC2’s 
timer facility which is configured with the time length of one 
cycle as well as the time after the start of a cycle that the 
signal should go low. This signal is applied to the driver on 
the enable pins. The average voltage sent to the motors can be 
controlled by changing the duty cycle of these signals. The 
driver has two inputs, one for each motor, to control direction. 
These inputs should always be opposite of each other or both 
off, otherwise a short is created. 
 
F. Complete System Programming 
 The firmware for the entire robot takes full advantage of 
the eight threads of the XinC2.  Threads 0, 1, and 2 are for 
main strategy programming.  Thread 3 continuously loops the 
encoder subroutine, while Thread 4 continuously loops the 
subroutines of the bumper switches, line detectors, and 
encoder/infrared conversion to centimetres.  Thread 5 
continuously loops the subroutine for analog sensors, whereas 
Thread 6 continuously loops the ultrasonic sensor subroutine 
and ultrasonic conversion to centimetres subroutine.  Thread 
7 configures the ports and other resources of the XinC2, then 
continuously loops the subroutine controlling the motors.   
 

TABLE X 
THREAD USAGE SUMMARY 

Thread # Purpose 
0 Strategy programming. 
1 Strategy programming. 
2 Strategy programming. 
3 Updates tire encoder data. 
4 Updates bumper switch, line detector, and LED data.  

Also converts data from encoders and IR sensors to cm. 
5 Updates current sensing and IR sensing data. 
6 Updates ultrasonic sensor data. 
7 Configures ports on XinC2 and controls/updates 

motors. 
 
 



 
Fig. 17. Main Program Flowchart 

 
IV. TESTING 
A. Breadboarding 
 Initially, each subsystem was tested by constructing the 
circuit on a breadboard according to the schematics. This was 
an easy way to layout the circuit in order to test if each 
component was working properly, as well as the general 
circuitry. Components were interchanged easily if the 
subsystem was not performing adequately. Critical 
measurements and observations were taken using an 
oscilloscope to ensure the circuit was operating properly and 
power consumption was acceptable.  
  
 The breadboarding stage of testing was fairly trivial in this 
case because the subsystem circuitry is basic in nature and all 
circuits worked as expected, except the ultrasonic subsystem.  
It was discovered that one pin on the sonar was used to send 
and receive the signal, which required extra circuitry in order 
to separate the signal.  Breadboarding of this circuit was 
important to obtain the lowest possible power consumption 
while still successfully operating the sonar.  Motor testing 
was also performed at this stage by mounting the H-bridge 
and supporting circuitry on a breadboard, then operating the 
motors in both directions.    
 
B. Printed Circuit Board (PCB)  
 The PCB’s needed to be inspected after they were 
manufactured to ensure that each trace was where it should be 

and that the traces did not accidently short circuit. Some 
traces were connected at places where they should not have 
been, so they were carefully cut out. After soldering 
components onto the PCB, each PCB was tested individually 
in order to make sure that it performed identically to when it 
was tested on the breadboard. 
  
 The main problems encountered at this stage of testing 
were connected traces at places they shouldn’t be and 
excessive solder which created short circuits between 
adjacent traces.  The errors in traces were resolved through 
careful inspection of the boards and thorough comparison 
with the schematics.  Soldering issues were dealt with by 
using de-soldering strips to remove excess solder.  Some 
components were re-soldered in order to obtain good 
connections without unwanted short circuits.  Great care was 
taken when soldering close connections in order to minimize 
the likelihood of such cases. 
 
C. Test Program 
 Testing of the Mini-Sumo Robot was carried out using a 
test program which mimics our final program. The “Test 
Program” is a compilation of various test routines which can 
be accessed from the main menu of Eleven Engineering’s 
XDE Development Toolkit. These routines include a RAM 
register dump routine, a routine that displays the status of the 
sensors, and a routine called “Set Drive”. Set Drive allows the 
user to input data of a specific manoeuvre and run the “Drive” 
subroutine. The dump routine allows the user to get an instant 
update of any register defined in the “Long Data.asm” file. 
The sensors routine displays the data in all the RAM registers. 
 
 Besides allowing effective testing of the robot 
functionality, the test program is beneficial because we can 
simulate different situations by manually setting the sensors 
during an action. This is helpful because different 
manoeuvres and scenarios can be simulated quickly, thus 
showing which strategies are most beneficial for the whole 
system. 
 
V. CONCLUSION 
 The mini-sumo robot was designed and implemented 
successfully according to the specifications required by the 
client.  It met the 500g weight restriction, the 10x10cm base 
size restriction, and is able to manoeuvre around the ring and 
locate the opponent, while carrying out both defensive and 
offensive strategies.  A diverse array of sensors is used to 
provide the microcontroller with as much information as 
possible.  This information is then interpreted by various 
subroutines and appropriate actions are implemented. 
Possible improvements that could be made to the mini-sumo 
robot are using cheaper encoder than the Lynxmotion line 
detector to save on costs and using different positioning of the 
tire encoders to reduce fluctuations in low and high voltages.   
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